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Abstract: In this paper we propose new algorithmic methgiging with a high probability the correct answerthe decision problem of
security in graphs. For a given graph G and a stlSsef a vertex set of G we have to decide wh&ligisecure, i.e. every subset X of S
fulfils the condition: |N[X] S| [N[X] \ S|, where N[X] is a closed neighbourhoddXin graph G. We constructed a polynomial time
property pseudotester based on the heuristic usimglated annealing and tested it on graphs wittuged small subgraphs G[S] being
trees or graphs with a bounded degree (by 3 o). approach is a generalization of the conceptr@iperty testers known from the subject
literature, but we applied our concepts to the cedditnplete problem.

KEYWORDS: Property tester, pseudotester, secure setrggccoNP-completeness
Algorytmy testugce bezpieczestwo zbioru wierzchotkéw grafu

Streszczenie:W niniejszym artykule przedstawiamy metoderyfikowania bezpiecizstwa zbioru w grafie, dafg wysokie
prawdopodobigstwo poprawnej weryfikacji. Problemem jest glenie, czy dla danego grafu G oraz podzbioru Srabigerzchotkéw tego
grafu zbiér S jest bezpieczny, to znaczsdkagego podzbidr X spetnia warunef[X] » § = [N[X] \ §, gdzie NIX] jest domknitym
sgsiedztwem zbioru X w grafie G. Zaprojektodraly pseudotester o wielomianowejzploasci obliczeniowej dla decyzyjnego problemu
bezpieczéstwa zbioru w grafie wykorzystigj m.in. koncepejsymulowanego wgrzania. Wykonafimy testy dla grafow, w ktérych podgraf
indukowany przez zbiér S jest drzewem lub grafemaniczonego stopnia (przez 3 oraz 4). Z uwagi ndlRx@upeiné¢ problemu
bezpieczéstwa zaproponowane przez nas pédiejjest uogolnieniem koncepcji testowania wigsnpnanej z literatury.

Streszczenie: Testowanie wlasidoi, pseudotester, zbior bezpieczny, bezpitsta®, coNP-zupetio

e.g. FPTAS), but for decision problems the matemat so

1. INTRODUCTION easy, because the only correct answer given by the
) ) ) ] ] algorithm may be yes or no. What kind of approxiorat
The considerations in this paper are motivatedhey fact may we reach in that case? The answer comes wéth th
that there exists no non-deterministic exact patyiab time concept of property testers, which was introduced b
algorithm for testing secure sets in graphs (unlBs= Rubinfeld and Sudan in [13], and extended by Gattire
coNP_), WhiCh was prov_ed in [4]._The problem of drap [9], [10] and Raskhodnikova [12].
security was introduced in [3] and is formulateda®ws: Property testers (or testers) areparametrized algorithms
for a given graph G = (V,E) and a given non-empiyset S proposed for decision problems which are givingorrect
V(G) we have to decide whether S is a secure setevery answer with a given probability (which is a constareater
subset X of S fulfils the condition [N[X] S| [N[X] \ S|, than %2 and independent from) for a wide subset of all
where N[X] = {v [ V(G): v [T X [10] TIwlIX {v,w} [] possible inputs. Smaller [lvalues mean that with the given
E(G)} is a closed neighbourhood of X in graph G. probability the algorithm can produce the correctveer for
. L a wider subset of inputs.
For intractable optimization problems one may corit In this paper we focus on algorithmic approacheshe
approximation algorithms (or even approximationesuohs, problem of security in graphs. We propose a newistt
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which we called a pseudotester,
guarantee an independent and uniform distributibrthe
probability of choosing a valuable witness.

1.1The model and the problem definition

In this section we introduce all the concepts usedhe
paper concerning the problem of testing securityraphs.

Security in graphs. By SECURKEG,§ we denote the
answer to the question: is s®tsecure in graplG? For a
given subseX 0 S byc(X) = IN[X] n §- NX) \ § we
mean theadvantageof the defending vertices froik over
the attacking vertices outsi& Let us define the predicate
SEQX) as equal ta(X) = 0. Hence, by the definition of a
secure SeSBECURKG,S = [xos SEGX).

By an attack on S={vl,... M} we mean a sequence
{A4,...,A} of mutually disjoint sets such th&{ O N(v)) \ S
foralli =1,....k whereN(v)) = {w O V(G): {v.w} O E(G)}

is a neighbourhood of; in G. An attack ismaximalif and
only if each vertex from the attacking set (NS \ S
belongs to the attack (sequence).

By a defenceof S we mean a sequenc®i{...,Di} of
mutually disjoint sets such th&; 00 N[vi] n Sfor alli =
1,....k whereN[vi] = N(v;) O {vi}.

Following [4], we may state th&is secure irG if and only

if every attack ors can bedefendegi.e. for every attaclh
on S there is a defencB, such thatDj| = |Aj| for all i =

Fig 1:The graph with the secure set (black nodes).

The graph security problem was studied in [3] &b In

[4] the author proved theoNR-completeness of th8EC
problem for general graphs, leaving no prospectatiy
non-deterministic polynomial time algorithm unless
NP=coNP. In the paper [6] the authors construct a
parametrized algorithm with the running time of
O(24°92n), which decides if there exists a secure set ®f th
size less than or equal koin a given graplG. In [2] we
proposed polynomial time algorithms solving the pem
SECURKG,9 for completek-partite graphs, trees, cacti
graphs and subcubic graphs.
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because we cannotProperty testing. Following [7], we sketch the concept of

property testers for general decision problemschvlis a
generalization of the concept introduced in [13]r & given
decision problem’7 and set of all legal inputs (instancés)
we may precisely split into yesinstances Y) and no-
instances ). Now, letDCs be a family of subsets o,
such that the following twe-conditions are met:

A D0<ﬂ<gzsl DCELD DCEZ
4+ 0oy Og<g<q i0DCe

For a givenp > % we define gproperty testerA; as ang

parametrized algorithm (defined for evefy< ¢ < 1)
satisfying the following twgrobability conditions

1. Pr[A{i)=yes|iOY]=p
2. PrlALi)=no|iONg=p

In the following, we require our property testeossatisfy
the probability conditions witp = 0.95(widely used ap =

%). Note that for any instance froBC, the answer given

by the algorithmA: has no guarantee, thus we call this set a
don't careset. We may try to define thapproximation
property of testers as follows: the smaller theis, the
greater the probability that the algorithm produaesorrect
answer with the probability of at leapt Obviously, the

problem is much more complicated, because the key

problem is to determine:

» the complexity of the algorithmA. in terms of the
size of the input andl/¢.

* the relation betweebC, andg, i.e. how smalk is
required to ensure the correct answer (with the
probability of at leasp) for at leastd fraction of all
possible inputs.

The above model was widely discussed in [7], whbee
authors constructed two testers for the securitplem (see
section 1.2 for more details).

Following [12] we introduce the concept of instamb®ing
far (precisely &far) from satisfying the given property,
formally: an instanceé O | is &far from Y if and only ifi O
Ng Property testers are therefore algorithms thettrdjuish
inputs with a given property from those that afar from
satisfying the property. A useful tool for ensuritige
probability conditions iswitness lemma Consider the
problem/7 and an input instande7| for this problem. By a
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witnesswe mean” which is a partial input of (or a data
structure generated based on the input, mostly with
significantly reduced size of the input). By witness
testimonywe mean an answeyes or no given by the
witnessi® such that ifi O Y, then the testimony of the
witnessi® is exactlyyes Otherwise, ifi O N, then the
testimony of witness” is undefined (equal tges or no).
The witness” constructed for the inputd N is valuableif
and only if its testimony igo. If a single test (choosing of a
witness) catches a valuable witness with the pritibabf

at leastp, then randons =[ 3/p| independent tests (choosing
withesses uniformly) catch the witness with thebataility

of at leas95% (witness lemmjaBy the above, we proposed
a testing model that contains a definition efar, a
definition of a witness and its testimony, an aitwon
choosinga witness (independently and uniformly) and an
algorithm that produces a testimony for a givenness.
Following [7], we can sketch the model and the athm
rating criteria as follows: practical and intuitive
understanding of-far (i.e. how valuable the information
that input ise-far from satisfying a given property is to us),
the relationship betweerr and ps (the probability of
catching a valuable witness by the algorithm), the
complexity of the algorithm (in terms dfe and the input

size), the relationship betwe®C.ande.
Testing secure setd.eti = (G, be an input instance. For
a givenO < €< 1 we defineN, as follows:

i ONg = min{|X]: X0 SOSEQX) =na} <[5 (L- &

It is easy to verify that the twe-conditions defined in
section 1.1 hold. We build our heuristic takingirtccount
this definition of &far and our goal is to verify
experimentally the probability conditions from sent1.1.
Thus, our heuristic can be callegpseudotester

1.2 Previous results and our contribution

In [7] we proposed two testers based on attackatg and

defending sets, respectively. Let us briefly dischsth of
them.

The model based on attacking setdVe take into account
all the possible maximal attacks and require thagivaen
fraction of them must be defendable. Formally, aput
instance (the paiG andS, or equivalenthy§ andA = N(G) \
S forming the graph) ig-far from being secure if and only
if £ fraction of maximal attacks cannot be defendedrv
maximal attack is a withess and to check its temtiynwe
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can easily apply the maximum matching algorithm
presented in [1]. Moreover, we have to ensure that
method guarantees a uniform and independent chypo$ia
witness.

Algorithm 1.1 Attack based tester.

Repeat [3/é&l tines
Choose maximal attack
and uniformly at random.
I f A cannot be defended
Return no
El se
Return yes
End | f
End Repeat

A independently

t hen

Obviously, if Sis secure inG, the answer iyes Observe
that if an input instance is-far from being secure, the
probability of choosing indefensible attack iseadts, thus
by thewitness lemménding a witness it8/ctests is at least
0.95 The detailed analysis can be found in [7].

The model based on defending set3his model results
from the definition of a secure set. We take irntocant all
the possible subsets 8fand require that a given fraction of
them must satisfy th&EC condition. Formally, an input
instance iss-far from being secure if and only if tHeEC
condition is not satisfied far fraction of subsets @&. Every
subsetX [0 Sis a witness and its testimony $&EQX). We
have to choose subsets®tiniformly and independently at
random.

Algorithm 1.2 Subset based tester.

Repeat |3/ &ltines
Choose subset X OS uniformly and
independently at random
If SEQX) =no then
Return no
El se
Return yes
End | f
End Repeat

As previously, every secure set will be correceéyeitmined
and by the witness lemma (which is applicable foatt
tester) we have that finding a witness3ie tests is at least
0.95 The detailed analysis can be found in [7].

In this paper we are dealing with testing the sieclof
subsets ofG inducing trees and graphs with a bounded
degree 4 < 3 or 4< 4). Thus we are extending our results
from [2] and [7]. We proposed a very promising itegt



heuristic, and our goal was to verify the probapili
conditions for small graphs (exhaustively generat&dde
were interested in counting how many s8t&xhaustively
generated for smalf]) with random attacking sets ware-
instances and the heuristic gayes In our heuristic we
construct a candidate set that is close to beisgcure,
performing gluing and splitting operations, whiclhegless
false positive results than random algorithms presk in

[7].

2. SECURITY PROBLEM PSEUDOTESTER

In this section we will present our main resule theuristic
algorithm with the use of an improved model based o
defending sets (i.e. a valuable witness is a subsé6 with
SEQX)=no).

2.1  Model

We are given a grapB = (V,E) and a nonempty subsgbf
V, and an attacking seA = N(S \ S Our goal is to
determineSECUREKG,S. Let us recall that(X) = [N[X] n

S - IN(X) \ § and defina(X) = [X|. The higher the(X) is,
the stronger the seX, hence we want to minimize the
function c. Minimizing the second functiod prevent us
from terminating the algorithm too fast, with tHester size
equal to §.

The definition of e-far. Following section 1.1, lat= (G,
be an input instance. For a giver £< 1 we recall that:

i ONge= min{|X|: XO SOSEAX) =no} <[5 (1- &)

2.2 Algorithm

Our goal is to find a valuable witness for §dh graphG.
In the first step, we split vertex sétinto mutually disjoint
clusters €1, ¢,...,c}. To find the witness, we glue together
the clusters chosen on the basis of reasonabégiariBased
on the idea of simulated annealing, we can alsoetiomes
split certain clusters into smaller clusters (esiggletons)
with some decreasing probability. The algorithmsists of
a number of rounds, where each round is eitheuiagjlor a
splitting cluster. If we find a valuable witnesse \stop the
algorithm (the answer i30).

Remark 1.We require the instances to meet the following
conditions:

1. SissafeSEQS) =yes
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2. all singletons are safSEQ{s}) for all sO §
3. no useless attackenmsfS =V,
4. no useless defendefd[N[A]] = V.

Let us briefly discuss these conditions to justifyis

selection. First of all, we can verify these requmients in
polynomial time. The first and the second condifiesve us
with nontrivial instances. The third and the lase@ccount
for all the vertices significant to the answer.

Initial clusters. The first phase of the heuristic is to
establish the initial partition of the vertex setoi clusters.
In the general approach we split the vertex set iahdom
disjoint clusters, which guarantees that we caragdaind a
witness. In our tests we split the vertex set itltesters of
single elements s{ngleton}, because we wanted to
eliminate unexpected random successes when tetfteng
heuristic.

Gluing clusters. In order to glue the clusters together, we
use the criteri@ andd, as previously defined. We calculate
the value ofc(Cj O Gj) for all possiblei # j and find pairs
with the minimum value. Of course, a negative vabfie
means that som& does not satisfy th&EC condition,
thereforeSis not a secure set. The algorithm objective is to
construct a valuable witness, so the minimizatiérc as
well founded. The second criteriahis used in the case of
ambiguity of thec criterion. This will lead to a creation of
small clusters. In case of further ambiguity, weoate a
cluster at random.

Splitting clusters. Our idea is to sometimes split clusters
instead of gluing them. First of all, it ensurestttany
witness can be reached by such an algorithm (assutnat
starting clusters were randomly generated), andreby,
we improve the probability of finding a valuabletméss.
Yet to ensure that our algorithm fulfils the haltiproperty
(no clusters to glue) we opt for the decreasindpabdity of
the cluster splitting by means of splitting witrethse of the
simulated annealing concept. We introduce two fionetto
define the probability of the cluster splitting. Wall them
outer and inner probability functions. To define these
functions, we use the average cluster &@¢r) in roundr
and bqr) as the total number of splitting rounds before
roundr. The outer probability functiog: R — [0,1] has a
real argument, which ibgr). We require it to be a slowly
decreasing function tending to zero to achieve Hhiing
property. Our proposal is:

g(x) =max0, 3/2 — e,
whereh is constant or instance dependent.
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Fig 2: The inner probability function fdr = 5000

Probability

The inner probability functioft R — [0,1] also has a real
argument, which i€C(r). We require that the functioh
increases. For a giveawe can defindg = [§(1 - ¢ and
require thatf(kg) = %%, which means that if the average size
of the cluster is greater thdq, then the cluster is more
likely to be split. Moreover, we require thgko - p|S|)= q,
wherep, qO (0,1), which defines the slope of the function
as near to the poinkg. Our candidate is the following
function:

f(x) = %2+ 1/ rarctan(c(p,g) (X - ko))
where:

ap,g) = -tan(74q —%2) / pIY

j

0 10 20 30
EC

Probability
o
o

Fig 3: The outer probability function for:
|§=30,6=0.3, p=0.1andg=0.1

Finally, we obtain the probability of splitting dters in
round r as the product of both inner and outer glodly:
f(EC(r))g(bgr)). The decision which cluster to choose is
also probabilistic and depends on the cluster dizdact,

we are dealing here with the roulette method of the
probability distribution. The probability of thelsetion of

the clusterC; is proportional to the cluster size and equals
ICil/ 2 ICjl.

Heuristic and tester pseudocodeWe construct the tester
TH and the heuristigl.

Algorithm 2.1 The testeffH based on the heuristit(¢, f,
g! C! d

Repeat |3/ &ltimes
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If -=H(&f (8,9,cd ) then
Return no
End |f
End Repeat
Return yes

Algorithm 2.2 Security problem heuristic scherfég, f, g,
c, 0

Split  Sinto s disjoint clusters Cy,...,Cs
bs =0
Repeat
EC:= average cluster size
Pick at random Y or Nwith
probabilities: P(Y) =f (EQ g(bs)and
P(N) =1 - P(YV)
If Y then
Pick one random cluster G with
probability P(G) = |G| /I % |G|
Split cluster G into singletons.
bs = bs +1
End | f

For every pair of distinct clusters
G, G calculate c(CG OCj)
Join both clusters with minimum
the case of ambiguity use criterion d
Unti | there is only one cluster or there
is a cluster with SEC =no
| f there is a cluster with SEC =no then
Return no
El se
Return yes
End If

3. TESTS

We have conducted numerical tests for the te$térin
order to verify the probability conditions from sea 1.1
for the definition of&far given in the same section. We
used three virtual machines running in a cloudheddhem
had 8 logical computation cores (hardware-backeth wi
Intel Hex-Core CPUs), 160GB SSD and 16GB of RAM.
The implementation was done in Python 2.7 and thece
code is available on GitHub [8].

3.1  Test parameters

We used five parameters in our testet, namely:
* g(as in the definition offar),
« theinner probabilityfunctionf(e, p, 0,
+ theouter probabilityfunctiong,
» thefirst mergecriterionc,
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» thesecond mergeriteriond. Table 1.The total number of the generated graphs.
We have chosen only one candidate for the outdygtitity The generation method for the attacking set.In the
function g(x) = max0, 3/2 - &%, The inner probability second step, we attach attacking vertideso the graph
is a functiorf with three parameters: G[9, thus obtaining the whole graghwith V(G) = SO A

Thus any grapts will be a candidate to be secure in graph

» £-determines whethéreachedz, G. Each full test case (i.e. the gra@hy and the seh) is

« (- the value to be reached, constructed in the following steps:

* p-determines whethéreacheg).

» Set the average attacker deghge
Let us consider the inner probability functif(m) = 1/2 + e Take the connected grafitas a base,
1 arctar(c(x - ko)), wherekg is a parameter dependent on * Generate the vertex s&twith |A| = |9,
the instance and equaks = |9(1-¢), andc = -tan(74q — » For eacha O A choose a verteg [0 Sfrom the set
¥))I(p|S)). Our test cases cover four setsppfy: (p, 0 = {s: SEQ{s})} independently and uniformly at
(0.1, 0.3, (p, 9 = (0.1, 0.3, (p, 9 = (0.2, 0.) and p, ) = random and add the edga,§.
(0.2, 0.2. As mentioned before, we consider criteriandd * Repeat the following steps:
(both intended to be minimized) given by the foramut(X) * Take the attackea O A independently and
= IN[X] n §- |N[X] \ § andd(X) = |X|. The complexity of uniformly at random.
the heuristic depends on the parameter h of thetimg. e Take a vertexs O S from the set §
Taking a constant value d¢f in our tests i{ = 1000 we SEQ{s})} independently and uniformly at
guarantee that the simulated annealing process sfitgr a random and add the edge,§.
constant number of steps. Thus the overall comiylasi « Until the set § 0 S SEQ{s})} is empty or the
polynomial. average attacker degree is greater than or equal to
A,

3.2 Testcases . .

Verify if the constructed input instance meets the

. ! requirements specified in remark 1.
Generation method. In the first step, we construct the

graphG[ (i.e. a graph with the vertex set equaSoWe For each generated s& construct (if possible)100
exhaustively generate all connected small graph=edain attacking sets.

classes using the nauty package [11]: Test cases choice motivationAs already mentioned, the
problem of determining whether a &is secure in grap6

+ TreesT,wheren< 16, is coNRcomplete. However, for trees and subcubic graphs
e Subcubic graph4< 3) SG,wheren< 12, there exist polynomial time algorithms [7]. We tesir
+  Subquadro graphsdk 4) SQ, wheren < 9, heuristic on extended but still related graph @as$Ve do
not require the grapl® to be a tree (or a subcubic graph)
wheren refers to the number of vertices. but only the induced subgraigs[S should be a tree (or a
subcubic graph). In addition, we go a bit furthed &xtend
In table 1 we present the number of the generatmphg. the test cases to graphs wilhe 4. We conjecture that the
problem for such graphs @®@NR-complete.
n=112 3 45 6|7 8 9 10
T, 11 1 2 3 6 11 23 47 106 The experiment descri;)tior;{ Obviously, our Eeuzistic
p gives a correct answer for the secureSet graphG (no
SG 11 2 6 1029 64 194 531 1733 valuable witness). Thus we take into consideraiboty
SQ1 1 2 6 2178 353 1929 12207 these instances wheSds not a secure set. We use an exact
brute-force algorithm (of exponential complexity) terify
n= 11 12 13 14 15 16 that such an instance isna-instance. Additionally we find
T, 235 551 13013159 7741 19320 a valuable witnesX of the smallest cardinality. Finally, we
SG, 5524 19430 obtain the greatest value @f= 1 - [X|/|[§ such that the

instance is contained M, Ultimately, we start the heuristic
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for graphs (instances) prepared in that manner.h Eac
instance is associated with a propeiWe demand that the
probability of theyesanswer given by the-heuristic is less
than5%.

Extracting hard cases.In the third step, due to the limited
computational resources, we selected only thesehgra
instances that failed each test (i.e. instance i and all
tests gave thgesanswer), and which we suppose are good
candidates for breaking the probability conditioofsthe
tester. For each such instance we verified if & imember

of Ng by running our testet000times. If the instance can
be confirmed by the heuristic as belonging to thieyswith
the probability greater thah05 we call it ahard instance
3.3  Testresults

Results for the average attacker degree ofl. For
instances where the average attacker degree efjuals
heuristic was almost perfect (ove®9.9% of well

recognized cases). We retested all false positesults
carefully in order to determine whether they agances of

Nz We did not find any hard instances.

Results for the average attacker degree of. For
instances where the average attacker degree eguale
did not find any hard instances wh&#s a tree. The results
for subcubic and subquadrd € 4) instances are presented
below in table 2.

'n=/2/3|4|5/6|7|8|9 10/ 11| 12
'SG, 1 1 050.10.203 05 0.4 0.30.16 0.08
'SQ, 0 0 0 0 020813 16

Table 2. The fraction of instances suspected to be hard.
The values represent the percentage of the ctespe
instances.

After having found the instances suspected to bid, hae
conducted additional tests in order to confirm thiagy
actually are hard instances. The overall results the
instances confirmed to be hard are summarizedble ta
We skip the columns which both values edifal

'n=| 6 | 7| 8 9 |10 11 12
' SG, 0.14 0.2 0.41 0.230.18 0.08 0.04
| SQ, 0.13 0.610.93 1.12

Table 3.The fraction of instances confirmed to be hard.
The values represent the percentage of haranioss.
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Example of an instance confirmed to be hardThe graph
presented in figure 3 is a hard instance for ouwrriggc. The
set S is depicted as filled nodes whereas its indefdasib
subset is illustrated as four filled nodes with earvelope.
Any set of the cardinality less tha# fulfils the SEC
condition, thus it is are-far instance fore=1 - 46 = 1/3.
Note that from the very beginning we expected 1f&
heuristic to be an effective algorithm for thattarsce.

Fig 4Hard case for the heuristic
(ISl = 6, |A] = 6, the size of the smallest unsecure 4pt:

Conclusions and further research Our tests showed that
the proposed construction of the heuristic looksyve
promising. We suspect that its high efficiency che
increased by the modification of the coefficiensedi in the
algorithm. We definitely hope to resolve the tweeswhen
G[S is a subcubic graph or a tree. We plan to coetiour
research to give strong evidence to the conjecdhuae the
security problem for these classes i, or even inP. To
improve the heuristic we consider alternative fioret for
the inner and outer probability functions. Moreqwee plan
further tests of the heuristic for large sparsaloam graphs
with a well estimatede-far (by attaching some small hard
instances). One of the results of the computatameshard
instances which can be attached to the much biggsh.
Described technique will be helpful with the creatiof
large instances with a well estimatetar.
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