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Abstarct:   This paper presents the application of Kolmogorov-Arnold Networks (KAN) in classifying metal surface defects. Specifically, steel 
surfaces are analyzed to detect defects such as cracks, inclusions, patches, pitted surfaces, and scratches. Drawing on the Kolmogorov-
Arnold theorem, KAN provides a novel approach compared to conventional multilayer perceptrons (MLPs), facilitating more efficient 
function approximation by utilizing spline functions. The results show that KAN networks can achieve better accuracy than convolutional 
neural networks (CNNs) with fewer parameters, resulting in faster convergence and improved performance in image classification. 

Słowa kluczowe:  Kolmogorov–Arnold Networks, KAN, Classification, Metal surface defects, Artificial Neural Networks 

 

Sieci Kolmogorov-Arnold w klasyfikacji defektów powierzchniowych metali 
 
Streszczenie:   W niniejszej pracy przedstawiono zastosowanie sieci Kolmogorov-Arnold (KAN) w klasyfikacji defektów powierzchni metali. 
W szczególności badane są powierzchnie stali pod kątem wykrywania takich wad, jak pęknięcia, wtrącenia, łaty, powierzchnie z wżerami i 
zarysowania. Sieci KAN, oparte na twierdzeniu Kolmogorova-Arnolda, stanowią innowacyjną alternatywę dla tradycyjnych 
wielowarstwowych perceptronów (MLP), umożliwiając efektywniejsze aproksymowanie funkcji poprzez zastosowanie funkcji sklejanych. 
Wyniki badań wskazują, że sieci KAN mogą osiągać lepszą dokładność niż konwolucyjne sieci neuronowe (CNN) przy mniejszej liczbie 

parametrów, co skutkuje szybszą zbieżnością i lepszymi wynikami w klasyfikacji obrazów.  

Słowa kluczowe:  Kolmogorov–Arnold Networks, KAN, Klasyfikacja, Defekty powierzchniowe metali, Sztuczne Sieci Neuronowe 

 

1. Introduction 

The field of deep learning is rapidly evolving, with 

continuous advancements in neural network architectures 

significantly contributing to progress in the image 

classification field [1,2,3]. Convolutional Neural Networks 
(CNNs) have become a cornerstone in analyzing 

multidimensional data, such as images, due to their 

capability to automatically extract meaningful features from 

raw data. In recent years, there has been a growing 

integration of advanced mathematical theories into deep 

learning architectures[4], enhancing neural networks' ability 

to process complex data structures. Among the promising 
alternatives to traditional Multilayer Perceptron (MLPs), 

Kolmogorov-Arnold Networks (KANs) leverage the 

Kolmogorov-Arnold theorem and utilize splinefunction as a 

key element of their architecture. Inlight of these 
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developments, this workexplores the adaptation of KAN to 

convolutional layers, commonly used in CNN architectures 

for image classification. One such practical application of 

these networks is the classification of surface defectsof 

metallic parts, as steel and other alloys play a pivotal role in 

various industries, including automotive, defense, and 

machinery manufacturing. However, themanufacturing 

process of such materials often faces challenges related to 

quality control, leading to the occurrence of various defects, 
such as cracks, inclusions, patches, pitting surfaces, and 

scratches [5,6]. Effective classification of these defects is 

essential for ensuring the high quality of metallic 

partsproduction.The rationale behind utilizing KAN 

architectures, which incorporate learnable activation 

functions along edges, lies in their ability to increase both 

expressive capacity and efficiency. By substituting linear 

weight matrices with spline functions, KANs significantly 

reduce the number of required parameters to attain high 

accuracy, resulting in quicker convergence and improved 

generalization performance. 

2. Kolmogorov-Arnold Networks 

KANs are novel of neural network architecture based on 

the Kolmogorov-Arnold representation theorem [6,7]. They 

provide an alternative way to approximate functions by 

using learnable, parameterized univariate functions as 

activation functions rather than fixed ones typically used in 

MLPs. The Kolmogorov-Arnold theorem, a significant 

result in mathematical analysis, states that any continuous 

multivariate function can be expressed as a finite sum of 

continuous univariate functions. This gives KAN 

architectures a solid theoretical foundation, suggesting that 

complex multivariate functions can be broken down into 
simpler, univariate components. 

3. Comparision of KAN and MLP 

The advantages of spline functions (B-spline) over 

traditional activation functions in neural networks, 

particularly in the context of Kolmogorov–Arnold Networks 

(KAN), are quite distinctive.In particular, KANs offer 

significant differences in neural network construction that 

allow for greater flexibility and interpretability of models.  

Major differences between MLP and B-spline based 

networks are: 

 Better representation of local dependencies: Spline 
functions allow precise fitting to local data due to their 

structure, enabling accurate modeling of univariate 

functions, as described in the Kolmogorov-Arnold 

representation theories. Traditional activation 

functions like ReLU or Sigmoid lack this flexibility in 

local fitting, which can cause difficulties in accurately 

modeling complex data structures, especially with a 

small number of parameters [6,8]  

 Reduction of the curse of dimensionality: KANs utilize 

spline functions that effectively address the challenge 
of high-dimensional data, making these models more 

scalable in solving regression tasks. In contrast, MLPs, 

particularly those using classic activation functions, 

can struggle with this issue[8,9]  

 Adaptability of the B-spline grid: The spline functions 

used in KANs are parameterized as adaptable grids. 

This means that KANs are able to adjust themselves to 

changing input data during the learning process, 

whereas traditional activation functions in MLPs 

remain static and do not offer this level of 

flexibility[6]  

 Better performance with limited data: Thanks to spline 

functions, KANs can provide better results with 

smaller datasets, as their structure is more efficient at 

uncovering internal data relationships. MLPs with 

traditional activation functions, such as ReLU, may 

require significantly larger datasets to achieve 

comparable performance [6,8]. 

 

In practice, KANs apply this theorem[6,7] by 

constructing neural networks that learn these univariate 

functions. The architecture usually consists of an input 
transformation layer, where each input variable passes 

through a learnable univariate function. This is followed by 

a summation layer that aggregates the outputs of these 

functions, creating intermediate values. Subsequently, the 

output layerprocesses the sum through additional learnable 

univariate functions, and the final outputs are produced by 

summing their results. Essentially, KAN simplifies the task 

of approximating a complex function by breaking it down 

into smaller, manageable parts that are adjusted and learned 

during training. 

In contrast, MLPs use fixed functions like ReLU, 

sigmoid, or tanh, which stay the same throughout the entire 
training process[10,11]. This rigidity can sometimes limit 

the MLP's ability to model more complex relationships. In 

terms of approximation power, KANs are theoretically 

capable of representing any continuous function on a 

compact domain, just like MLPs, which are known to be 

universal approximators when given enough width and 
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depth. However, KANs might achieve the same level of 

function approximation with fewer parameters, making 

them a more efficient optionin some cases. Training these 

networks also differs from MLPs. While MLPs rely on 

well-established methods like backpropagation and gradient 

descent, KAN training involves learning the parameters of 

univariate functions, which can require more specialized 
optimization techniques. 

4. Experiment settings  

In our experiment, we decided to use two datasets of 

surface metal defects: 

 

 Neu Metal Surface Defects Data [12] contains 1800 

images of metal surfaces (200x200 pixels) with six 

defect classes: Crack, Inclusion, Patch, Pitted Surface, 

Rolled-in Scale, and Scratches. 

 Severstal [13]: Steel Defect Detection includes 12,568 

images of steel surfaces (256x1600 pixels) with four 

defect classes: Rolled-in Scale, Patch, Craze, and Pitted 
Surface. 

 

In thisexperiment, thebaseline model of CNNs was built, 

utilizing commonly applied Convolutional and Linear layers 

typically used in classification tasks. For clarity and ease of 

reference,the specific namesofthese models have been 

assigned, which are detailed in the following description: 

 

 TwoLayerConvNet: Two convolutional layers with five 

filters, ReLU activations, followed by max-pooling and 

a final fully connected layer for classification. 

 TwoLayerConvNetPlus: Two convolutional layers 

with five and twenty five filters, ReLU activations, max-

pooling, and two fully connected layers for more 

complex pattern learning. 

 SingleLayerLinearNet: A single fully connected layer 

applied to the flattened input for simple classification. 

 FourLayerConvNet: Four convolutional layers with 

increasing filter sizes, ReLU activations, max-pooling, 

followed by two fully connected layers for 

classification. 

 TwoLayerConvKAN: Two convolutional layers with 
ReLU activations, followed by a KAN Linear layer for 

enhanced feature transformation. 

 FourLayerConvKAN: Four convolutional layers with 

ReLU activations, followed by a KANLinear layer for 

flexible input-output mapping. 

 ThreeLayerConvTwoLayerKAN: Three convolutional 

layers with ReLU activations, followed by two 

KANLinear layers for flexible decision-making and 

regularization. 

5. Results 

Due to the limitation of using GPU for KAN networks, 

all models were running on CPU. EachKAN model has 
been trained for 100 epochs and all experiments was re-run 

10 times.The comparisonof these results with baseline 

methods [14] ispresented in Table 2. 

Based on the experimental results (Table 1, Figure 1 and 

Figure 2), itcan observed that the accuracy achieved by the 

KAN-based neural network is noticeably higherthan CNN. 

Moreover, this improvement is achieved with fewer neural 

network parameters. 

 

Table 1.  Classification Performance model comparison for the best 

network 

Dataset Model 
Test 

Accuracy 

Training 

Time (s) 
Params 

Severstal 

TwoLayerConvNet 0.76 73057 18374 

ThreeLayerConvTwoL

ayerKAN 
0.79 120188 1054480 

TwoLayerConvNetPlus 0.78 81349 5020174 

SingleLayerLinearNet 0.74 77005 172804 

FourLayerConvNet 0.79 115963 14830372 

TwoLayerConvKAN 0.78 105067 270370 

FourLayerConvKAN 0.79 118189 248672 

NEU 

Metal 

Surface 

Defects 

TwoLayerConvNet 0.91 20452 75376 

ThreeLayerConvTwoL

ayerKAN 
1.00 33741 2694800 

TwoLayerConvNetPlus 0.97 20970 14748688 

SingleLayerLinearNet 0.37 17457 720006 

FourLayerConvNet 0.97 32335 41045286 

TwoLayerConvKAN 0.93 28244 1125370 

FourLayerConvKAN 0.98 31529 889952 
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Figure 1. Loss Functionresults for presented best models 

 

Figure 2. Test and Train Accuracyresults for presented best models 

Along with findings from similar research [15], the KAN-

based network for image classification demonstrates 

promising outcomes. However, KANs are primarily 

designed for scenarios where high accuracy and 

interpretability are key objectives. While interpretability is 

indeed essential, for example, in large language models 

(LLMs) [16], it may have very different implications when 

compared to its meaning in scientific applications. 

Regarding Table 1., Table 2. and the Severstal dataset, 

the ThreeLayerConvTwoLayerKAN model achieves one 

of the highest test accuracy scores at 0.79. However, this 
comes at the expense of a significantly longer training time 

and a large parameter count exceeding 1 million. The 

complexity of this model appears to aid in more accurate 

metal surface defect detection compared to simpler models, 

but it significantly increases computational time. The 

TwoLayerConvKAN model appears from the visual data 

to perform comparably to other KAN models, indicating 

that this architecture is effective in defect detection. 

Similarly, the FourLayerConvKANmodel reaches a high 

test accuracy, nearing 0.98, but with fewer parameters than 

more complex models like TwoLayerConvNetPlus, 
showing a favorable balance between efficiency and 

performance. In the NEU Metal Surface Defects dataset, 

KAN-based models, compared to the results of the models 

in [14], perform exceptionally well, achieving near-perfect 

accuracy. The ThreeLayerConvTwoLayerKAN model 

achieves excellent accuracy, close to 1.0. However, its 

parameter count (2,694,800) and extended training time 

suggest it may be excessive for more straightforward tasks. 

The FourLayerConvKAN model maintains similarly high 

accuracy, close to 1.00, while using fewer parameters, 

making it a better balance between performance and model 

complexity. Overall, KAN architecture models deliver 
superior accuracy and defect classification effectiveness. On 

the Severstal dataset, they achieve some of the highest 

scores, though simpler models such as 

TwoLayerConvNetPlus (Table 1) also perform very well, 

suggesting that these KAN-based models are most suited for 

more complex tasks. However, the computational costs 

associated with training these models are considerable, 

which may be a limitation for resource-constrained 

applications. 
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Table 2.  Juxtaposition of KAN modelsperformancewith baselines from 

[14] 

Dataset Model Test Accuracy 

Severstal 

TwoLayerConvKAN 0.775 +/- 0.019 

FourLayerConvKAN 0.788 +/- 0.006 

ThreeLayerConvTwoLayerKAN 0.793 +/- 0.005 

NEU 

Metal 

Surface 

Defects 

TwoLayerConvKAN 0.93 +/- 0.032 

FourLayerConvKAN 0.977 +/- 0.006 

ThreeLayerConvTwoLayerKAN 0.99 +/- 0.01 

CNN [14] 93.24 

KNN [14] 83.22 

Siamese neural network [14] 28.22 

6. Conclusions 

This research shows great promise and yields 

satisfactory results; however, a significant challenge lies in 

the lengthy training times. In our study, we observed how 

the KAN-based network performed when applied to a 

smaller dataset. Even with relatively small KAN-based 

neural networks, the computational demands were 

substantial, and with larger datasets and more complex 

networks, the training time could become prohibitively 

long. This limitation may lead to abandoning this approach 
in favor of architectures specifically designed for such 

problems.  
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