Using Sentinel-2 satellite imagery in the analysis of forest cover changes following the storm of 2017 – case study of the Przymuszowo Forest Inspectorate in Poland
DOI:
https://doi.org/10.34767/GAT.2022.10.07Słowa kluczowe:
storm, Sentinel-2, NDVI, BI2, unsupervised classificationAbstrakt
Climate change is causing increasingly frequent extreme events (including strong winds), which are becoming an integral part of the natural environment. In 2017, from the 11th to 12th of August, a storm passed causing catastrophic damage in general and to forest resources in particular. The study aims to determine the feasibility of using Sentinel-2 satellite imagery and other GIS tools and techniques for estimating forest damage caused by the storm in the Przymuszowo Forest Inspectorate. The analysis of forest cover changes was performed using the NDVI and BI2 index as well as unsupervised classification predicated on satellite imagery obtained before and after the storm. It was calculated that a total of 2,048.1 hectares of forest was damaged based on the NDVI index and 1,661.7 hectares based on the unattended classification, whereas the area of agricultural and and non-forest land based on the BI2 index was 1,739.1 hectares. These figures are comparable to the records of post-storm losses from the Przymuszewo Forest Inspectorate. This indicates a considerable feasibility of Sentinel-2 satellite imagery in assessing damage caused by extreme phenomena (strong winds) in forest areas, which is true both on a regional and global scale owing to the wide range of imaging (up to 290 km). The only limitation for Sentinel-2 satellites is heavy cloud cover, as the emitted radiation does not penetrate clouds.
Bibliografia
Chojnacka−Ożga L., Ożga W. 2018. Meteorological conditions of the occurrence of wind damage on August 11−12, 2017 in the forests of central−western Poland. Sylwan 162(3): 200−208. https://doi.org/10.26202/ sylwan.2017132. [In Polish with English abstract]
Ciesielski M., Bałazy R., Hycza T., Dmyterko E., Bruchwald A. 2016. Estimating the damage caused by the wind in the forest stands using satellite imagery and data from the State Forests Information System. Sylwan 160(5): 371−377. [In Polish with English abstract]
Ciołkosz A., 2005. Teledetekcja satelitarna źródłem informacji o obiektach, zjawiskach i procesach zachodzących na Ziemi, Nauka 4, 51-70.
Clarke M., Rendell H. 2007. Climate, extreme events and land degradation. [In:] M.V.K. Sivakumar, N. Ndiang’ui (Eds.) Climate and Land Degradation. Environmental Science and Engineering. Springer Berlin, Germany, 137-152, https://doi.org/10.1007/978-3-540-72438-4_7
Czapiewski S., Szumińska D. 2022. An Overview of Reote Sensing Data Applications in Peatland Research Based on Works from the Period 2010-2021. Land 11, 24. https://doi.org/10.3390/ land11010024
Dalponte M., Marzini S., Solano-Correa Y.T., Tonon G., Vescovo L., Gianelle D. 2020. Mapping forest windthrows using high spatial resolution multispectral satellite images. International Journal of Applied Earth Observation and Geoinformation 93, 102206. https://doi.org/10.1016/j.jag.2020.102206
Diemientiew G. 2018. Extreme weather phenomenon in Poland in Times of climate change on the exam¬ple of floods and strong winds. Kultura Bezpieczeństwa, Nauka. Praktyka. Refleksje 32, 79–100. http:doi. org/10.5604/01.3001.0012.8094 [In Polish with English abstract].
Dysarz R. 1998. Zarys geomorfologii i typy krajobrazu naturalnego w północnej części Borów Tucholskich. [In:] Banaszak J., Tobolski K. (Eds..), Park Narodowy Bory Tucholskie. Stan poznania przyrody na tle kompleksu leśnego Bory Tucholskie. Wydawnictwo Wyższej Szkoły Pedagogicznej, Bydgoszcz, 9-17 [In Polish]
Escadafal R. 1989. Remote sensing of arid soil surface color with Landsat thematic mapper. Advances in Space Resesearch 9, 159–163.
Forzieri G., Cescatti C., Silva F.B., Feyen L.E. 2017. Increasing risk over time of weather−related hazards to the Euro¬pean population: a data−driven prognostic study. Lancet Planet Health 1: e200−e208. https://doi.org/10.1016/ S2542-5196(17)30082-7
Frąckiewicz M., Palus H. 2011. KHM Clustering technique as a segmentation method for endoscopic colour images. International Jurnal of Applied Mathematics Computer Science 21(1), 203–209.
Galon R. 1953. Monografia doliny i sandru Brdy. Studia Societatis Scientarum Toruniensis, Sectio C, 1, 6, 1-54 [In Polish].
Giannetti F., Pecchi M., Travaglini D., Francini S., D’Amico G., Vangi E., Cocozza C., Chirici G. 2021. Estimating VAIA Windstorm Damaged Forest Area in Italy Using Time Series Sentinel-2 Imagery and Continuous Change Detection Algorithms. Forests 12, 680. https://doi.org/10.3390/f12060680
Haarsma R.J., Hazeleger W., Severijns C., de Vries H., Sterl A., Bintanja R., van Oldenborgh G. J., van den Brink H.W. 2013. More hurricanes to hit western Europe due to global warming. Geophysical Research Letters 40, 1783−1788. https://doi.org/10.1002/grl.50360
Hejmanowska B., Wężyk P. 2020. Dane satelitarne w administracji publicznej. Wydawnictwo Polska Agencja Kos¬miczna, Warszawa, 456, [In Polish].
Hościło A., Lewandowska A. 2018. Zastosowanie danych z satelity Sentinel−2 do szacowania rozmiaru szkód spowodowanych w lasach huraganowym wiatrem w sierpniu 2017 roku. Sylwan 162(8), 619−627. https://doi. org/10.26202/sylwan.2018055 [In Polish with English avstract].
Instytut Meteorologii i Gospodarki Wodnej PIN, 2017, Biuletyn Państwowej Służby Hydrologiczno-meteorolog¬icznej, sierpień, nr. 8 (184), ISSN 1730-6124 [In Polish].
Jankowski M., Świtoniak M., Mendyk Ł. 2015. Stan pokrywy glebowej Tucholskiego Parku Krajobrazowego. [In:] Kunz M. (Ed.) Monografia naukowa: Stan poznania środowiska przyrodniczego Tucholskiego Parku Krajobra¬zowego i Rezerwatu Biosfery Bory Tucholskie. Polskie Wydawnictwa Reklamowe, Tuchola/Toruń, s. 31-43 [In Polish with English abstract]
Kaczmarek J. 2018. Klęska wiatrołomów na terenie Regionalnej Dyrekcji Lasów Państwowych w Toruniu. Wydawn¬ictwo Regionalna Dyrekcja Lasów Państwowych w Toruniu, p. 223, [In Polish].
Karasiewicz T., Weckwerth P., Adamczyk A., Redzimska B. 2015. Budowa geologiczna i geomorfologia Tuchol¬skiego Parku Krajobrazowego. [In:] Kunz M. (Ed.) Monografia naukowa: Stan poznania środowiska przyrod¬niczego Tucholskiego Parku Krajobrazowego i Rezerwatu Biosfery Bory Tucholskie. Polskie Wydawnictwa Reklamowe, Tuchola/Toruń, s. 15-30 [In Polish with English abstract]
Kaufman L., Rousseeuw P.J. 1990. Finding groups in data: An introduction to cluster analysis. John Wiley and Sons Copyright, New York, USA, p. 342, https://doi.org/ 10.1002/9780470316801
Kundzewicz Z., Matczak P. 2010, Zagrożenia naturalnymi zdarzeniami ekstremalnymi, Nauka 4, s. 77-86 [In Polish].
Likas A., Vlassis N., Verbeek J. 2003. The global K-means clustering algorithm. Pattern Recognition 36, 451–461.
Łabaj A. 2017. Lotnicza inwentaryzacja uszkodzeń od wiatru w Nadleśnictwie Przymuszewo – 02.10.2017 r.
Okoniewska M., Szumińska D. 2020. Changes in Potential Evaporation in the Years 1952–2018 in North-Western Poland in Terms of the Impact of Climatic Changes on Hydrological and Hydrochemical Conditions, Water 12, 877. https://doi.org/10.3390/w12030877
Olmo V., Tordoni E., Petruzzellis F., Bacaro G., Altobelli A. 2021. Use of Sentinel-2 Satellite Data for Windthrows Monitoring and Delimiting: The Case of “Vaia” Storm in Friuli Venezia Giulia Region (North-Eastern Italy). Remote Sensing 13, 1530. https://doi.org/ 10.3390/rs13081530
Pettorelli N., Ryan S., Mueller M., Bunnefeld N., Jędrzejewska B., Lima M., Kausrud K. 2011. The Normalized difference Vegetation Index (NDVI): unforessen successen in animal ecology. Climate Research 46(1), 15-27, https://doi.org/10.1016/j.tree.2005.05.011
Piragnolo M., Pirotti F., Zanrosso C., Lingua E., Grigolato S. 2021. Responding to large-scale forest damage in an alpine environment with remote sensing, machine learning, and web-GIS. Remote Sensing 13, 1541. https:// doi.org/10.3390/rs13081541
Regionalna Dyrekcja lasów Państwowych w Toruniu, 2019. Plan Urządzenia Lasu Nadleśnictwa Przymuszewo na lata 2019-2028 [In Polish]
Rouse J.W., Haas R.H., Schell J.A., Deering D.W. 1974. Monitoring Vegetation Systems in the Great Plains with ERTS. Third ERTS-1 Symposium NASA, NASA SP-351, Washington DC, USA, 309-317.
Roy D.P., Wulder M.A., Loveland T.R., Woodcock C.E., Allen, R.G., Anderson M.C., Helder D., Irons J.R., Johnson D.M., Kennedy R., Scambos T.A., Schaaf C.B., Schott J.R., Sheng Y., Vermote E.F., Belwart A.S., Bindschadler R., Cohen W.B., Gao F., Hipple J.D., Hostert P., Huntingaton J., Justice C.O., Kilic A., Kovalskyy V., Lee Z.P., Lymburner L., Masek J.G., McCorkel J., Shuai Y., Trezza R., Vogelmann J., Wynne R.H., Zhu Z. 2014. Landsat 8: Science and product vision for terrestrial global change research. Remote Sensing Environment 145, 154–172. http://dx.doi.org/10.1016/j.rse.2014.02.001
Šimić Milas A., Rupasinghe P., Balenović I., Grosevski P. 2015. Assessment of forest damage in Croatia using Land¬sat-8 OLI Images. South-east European forestry 6(2), 159 -169. http://dx.doi.org/10.15177/seefor.15-14
Starostwo Powiatowe w Chojnicach, Biuletyn Powiatu Chojnickiego, 2018. Klucz i brama, półrocze pod znakiem nawałnicy, Nr.5/2018, ISSN 2451-215X [In Polish]
Sulik S., Kejna M. 2020. The origin and course of severe thunderstorm outbreaks in Poland on 10 and 11 August 2017, Bulletin of Geography. Physical Geography Series 18, 25–39. https://doi.org/10.2478/bgeo-2020-0003
Szczepańska M. 2022a. Zmiany lesistości na terenie Borów Tucholskich po nawałnicy w 2017 roku i jej potencjalny wpływ na funkcjonowanie systemów rzecznych. Praca inżynierska, Instytut Geografii, Uniwersytet Kazimierza Wielkiego w Bydgoszczy [In Polish].
Szczepańska M. 2022b. Wykorzystanie obrazów satelitarnych do analizy zmian wilgotności wybranych torowisk w Borach Tucholskich. Praca magisterska, Instytut Geografii, Uniwersytet Kazimierza Wielkiego w Bydgoszczy [In Polish].
Tomaszewska M., Lewiński S., Woźniak E. 2011. Wykorzystanie zdjęć satelitarnych MODIS do badania stopnia pokrycia terenu roślinnością. Teledetekcja środowiska 46, 13–22 [In Polish].
Trębski K. 2017. Największy kataklizm w historii Lasów Państwowych. https://www.lasy.gov.pl/pl/informacje/ aktualnosci/najwieksza-taka-kleska-w-historii-polskich-lasow
Urbański J. 2011. GIS w badaniach przyrodniczych. Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk, p. 232, [In Polish].
Wang W., Qu J.J., Hao X., Liu Y., Stanturf J.A. 2010. Post-Hurricane Forest Damage Assessment Using Satellite Remote Sensing. Agricultural and Forest Meteorology 150, 122–132. https://doi.org/10.1016/j.agrformet.2009.09.009
Wesołowski T., Żmihorski M. 2018. Lasy po huraganach: uczymy się na błędach. WWW.FORESTBIOLOGY.ORG Article 1, 1- 7 [In Polish].
Xie B., Ding J., Ge X., Li X., Han L., Wang Z. 2022. Estimation of Soil Organic Carbon Content in the Ebinur Lake Wetland, Xinjiang, China, Based on Multisource Remote Sensing Data and Ensemble Learning Algorithms. Sensors 22, 2685. https://doi.org/10.3390/s22072685
Xue J., Su B. 2017. Significant remote sensing vegetation indices: A review of developments and application. Jurnal of Sensors 2017, Article ID: 1353691, https://doi.org/10.1155/2017/1353691
Zarzecki M., Pasierbski A., 2009. Zastosowanie Gis i teledetekcji w badaniach szaty roślinnej, Wiadomości Botan¬iczne 53(3/4), 53-56 [In Polish].
Zhang X., Chen G., Cai L., Jiao H., Hua J., Luo X., Wei X., 2021. Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery. Sustainability 13, 4893. https://doi.org/10.3390/su13094893
Internet sources
ESA, 2019. Copernicus Open Access, https://scihub.copernicus.eu/dhus/#/home (Date of access: 21.10.2019).
IMGW, 2020. Dane pomiarowo obserwacyjne IMGW, https://danepubliczne.imgw.pl (Date of access: 16.03.2020).
Wetterzentrale.de, https://www.wetterzentrale.de/ (Date of access: 10.04.2020).
Pobrania
Opublikowane
Wersje
- 2022-12-31 - (2)
- 2022-12-31 - (1)
Numer
Dział
Licencja
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa – Użycie niekomercyjne – Bez utworów zależnych 4.0 Międzynarodowe.