Fraktalna analiza chodu
DOI:
https://doi.org/10.34767/SIMIS.2020.02.04Słowa kluczowe:
modele obliczeniowe, kliniczna analiza chodu, jakość życia związana ze zdrowiem, HRQoLAbstrakt
Chód stanowi jedną z najbardziej złożonych i najczęściej wykonywanych czynności wykonywanych przez człowieka. Pomimo postępu technologicznego w przypadku diagnostyki i oceny funkcji chodu nie ma jednego, uniwersalnego narzędzia. Rozwiązania oparte na inteligencji obliczeniowej mogą uzupełniać tradycyjne metody klinicznej analizy chodu. W artykule przedstawiono rozwijaną przez autorów metodę fraktalnej analizy chodu
Bibliografia
Mikołajewska E. Nowe markery chodu w klinicznej analizie chodu w grupie pacjentów po udarze mózgu usprawnianych metodą NDT-Bobath. Wydawnictwo CM UMK, Bydgoszczy 2017.
Zembaty A. Kinezyterapia. Kasper, Kraków 2003.
Mikołajewska E. Obiektywizacja wyników rehabilitacji – próba ujęcia kompleksowego. Nowiny Lekarskie, 2011; 80(4):305-311.
Prokopowicz P., Mikołajewski D., Tyburek K., Mikołajewska E. Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks. Bulll. Pol. Acad. Sci. Tech. Sci. 2020; 68(2):191-198.
Mandelbrot B. B. The fractal geometry of nature. W.H. Freeman, San Francisco 1982.
Ivanov P. C., Amaral L. A. N., Goldberger A. L., Havlin S., Rosenblum M. G., Struzik Z., Stanley, H.Multifractality in human heart dynamics. Nature 1999; 399:461-465.
Zheng Y., Geo J. B., Sanchez J. C., Principe J. C., Okun M. S. Multiplicative multifractal modelling and discrimination of human neuronal activity. Phys. Lett. A 2005; 344:253-264.
Jose G. Halos and Voids in a Multifractal Model of Cosmic Structure, Astrophysical Journal 2007; 658:11-24.
Peng C. K., Mietus J. E., Liu Y., Lee C., Hausdorff J. M., Stanley H. E., Goldberger A. L., Lipstiz, I. A.. Quantifying fractal dynamics of human respiration: age and gender effects. Ann. Biomed. Eng. 2002; 30: 683-692.
Kudinov A. N., Tsvetkov V. P., Tsvetkov I. V., Catastrophes in the multi-fractal dynamics of socialeconomic systems. Russian Journal of Mathematical Physics 2011; 18(2):149-155.
Kantelhardt J. W. Fractal and multifractal time series. In: Meyers RA, editor. Mathematics of complexity and dynamical systems. New York, NY: Springer; 2012. p.463–87.
Pradhan N., Dutt D. N. Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Comput Biol Med. 1993; 23(5):381-8.
Arjunan S. P., Kumar D. K. Fractal based modelling and analysis of electromyography (EMG) to identify subtle actions. Conf Proc IEEE Eng Med Biol Soc. 2007; 2007:1961-4.
Ripoli A., Belardinelli A., Palagi G., Franchi D., Bedini R. An effective algorithm for quick fractal analysis of movement biosignals. J Med EngTechnol. 1999; 23(6):216-21.
Holzreiter S. H., Köhle M. E. Assessment of gait patterns using neural networks. J Biomech. 1993; 26(6):645-51.
Gioftsos G., Grieve D. W. The use of neural networks to recognize patterns of human movement: gait patterns. Clin Biomech. 1995; 10(4):179-183.
Lapham A. C., Bartlett R. M. The use of artificial intelligence in the analysis of sports performance: a review of applications in human gait analysis and future directions for sports biomechanics. J Sports Sci. 1995; 13(3):229-37.
Clayton H. M. Instrumentation and techniques in locomotion and lameness. Vet Clin North Am Equine Pract. 1996; 12(2):337-50.
Kaijima M., Foutz T. L., McClendon R. W., Budsberg S. C. Diagnosis of lameness in dogs by use of artificial neural networks and ground reaction forces obtained during gait analysis. Am J Vet Res. 2012; 73(7):973-8.
Leon M. A. Distributed neural networks for biomedical research. Biomed Sci Instrum. 1997; 34:201-5.
Lafuente R., Belda J. M., Sánchez-Lacuesta J., Soler C., Prat J. Design and test of neural networks and tatistical classifiers in computer-aided movement analysis: a case study on gait analysis. Clin Biomech. 1998; 13(3):216-229.
Azulay J. P., Vacherot F., Vaugoyeau M. Gait disorders: mechanisms and classification. RevNeurol. 2010; 166(2):142-8.
Begg R., Kamruzzaman J. Neural networks for detection and classification of walking pattern changes due to ageing. Australas Phys Eng Sci Med.2006; 29(2):188-95.
Barton G., Lisboa P., Lees A., Attfield S. Gait quality assessment using self-organising artificial neural networks. Gait Posture. 2007; 25(3):374-9.
Scheffer C., Cloete T. Inertial motion capture in conjunction with an artificial neural network can differentiate the gait patterns of hemiparetic stroke patients compared with able-bodied counterparts. Comput Methods Biomech Biomed Engin. 2012;15(3):285-94.
Lozano-Ortiz C. A., Muniz A. M., Nadal J. Human gait classification after lower limb fracture using Artificial Neural Networks and principal component analysis. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:1413-6.
Luu T. P., Low K. H., Qu X., Lim H. B., Hoon K. H. An individual-specific gait pattern prediction model based on generalized regression neural networks. GaitPosture. 2014; 39(1):443-8.
Oh S. E., Choi A., Mun J. H. Prediction of ground reaction forces during gait based on kinematics and a neural network model. J Biomech. 2013;46(14):2372-80.
Kaczmarczyk K. Próba klasyfikacji chodu u osób po udarze mózgu. W: Zastosowania metod statystycznych w badaniach naukowych IV. Statsoft Polska. Kraków 2012, s. 333-42.
Kaczmarczyk K., Wit A., Krawczyk M., Zaborski J. Gait classification in post-stroke patients using artificial neural networks. Gait Posture 2009; 30(2):207-210.
Kaczmarczyk K., Wit A., Krawczyk M., Zaborski J. Artificial Neural Networks (ANN) Applied for Gait Classification and Physiotherapy Monitoring in Post Stroke Patients. [W:] Suzuki K. Artificial Neural Networks : Methodological Advances and Biomedical Applications, InTech, Rijeka 2011, ss. 303-328.
Kostek B., Kupryjanow A. Wykorzystanie sieci neuronowych i metody wektorów nośnych SVM w procesie rozpoznawania aktywności ruchowej pacjentów dotkniętych chorobą Parkinsona. [W:] Tadeusiewicz R., Korbicz J., Rutkowski L., Duch W. (red.) Sieci neuronowe w inżynierii biomedycznej. Tom 9. monografii: Torbacz W., Maniewski R., Wójcicki J. M., Liebert A. (red.) Inzynieria biomedyczna – podstawy i zastosowania. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2013, ss. 239-262.
Bartlett R. Artificial intelligence in sports biomechanics: new dawn or false hope? J Sports SciMed. 2006;5(4):474-9.
Jacobs D. A., Ferris D. P. Estimation of ground reaction forces and ankle moment with multiple, lowcost sensors. J Neuroeng Rehabil. 2015;12:90.
Lau H. Y., Tong K. Y., Zhu H. Support vector machine for classification of walking conditions of persons after stroke with dropped foot. Hum Mov Sci. 2009;28(4):504-14.
Lau H. Y., Tong K. Y., Zhu H. Support vector machine for classification of walking conditions using miniature kinematic sensors. Med Biol EngComput. 2008;46(6):563-73.
Muniz A. M., Nadal J. Application of principal component analysis in vertical ground reaction force to discriminate normal and abnormal gait. GaitPosture. 2009; 29(1):31-5.
Muniz A. M., Liu W., Liu H., Lyons K. E., Pahwa R., Nobre F. F., Nadal J. Assessment of the effects of subthalamic stimulation in Parkinson disease patients by artificial neural network. Conf Proc IEEE EngMed Biol Soc. 2009;2009:5673-6.
Ferber R., Osis S. T., Hicks J. L., Delp S. L. Gaitbiomechanics in the era of data science. J Biomech.2016; 49(16): 3759-3761.
Syczewska M., Wąsiewicz P. Contemporarytechniques to manage of databases in gait analysis.Elektronika Polish Journal. 2009; 8:294-296.