Selected applications of 3D scanners and 3D printers in rehabilitation engineering

Authors

  • Łukasz Ziarnecki
  • Sonia Stańczak
  • Patryk Kawalec
  • Marek Macko Kazimierz Wielki University
  • Dariusz Mikołajewski Kazimierz Wielki University

DOI:

https://doi.org/10.34767/SIMIS.2018.02.04

Keywords:

mechatronics, information technology, 3D printing, biomeducal applications.

Abstract

3D scanning allows for recording of the physical objects in the form of digital files. 3D printing allows for creating physical objects from digital files. Current areas of applications of the aforementioned 3D technologies are remarkably wide. 3D printing technology can provide another breakthrough (similar to digital revolution) both in country economy and everyday life, mainly through modification or replacement currently used models of manufacturing, distribution and consumption of products and services. This article aims at assesment the extent to which 3D printers and 3D scanners have been applied in rehabilitation engineering.

References

Canessa E., Fonda C., Zennaro M. Low cost 3D printers for science, education & sustainableeducation. Abdus Salam International Centre for Theoretical Physics, 2013

Czerwieński K., Czerwieński M. Drukowanie w 3D. InfoAudit, 2014.

Evans B. Practical 3D Printers: The Science and Art of 3D Printing. Springer Verlag, 2012

Frauenfelder M. Make: Ultimate Guide to 3D Printing 2014. O'reilly Vlg. Gmbh&Co., 2014.

Hausman K., Horne R. 3D Printing For Dummies. John Wiley&Sons, 2014.

Hood-Daniel P., James K., Kelly K. Printing in Plastic: Build Your Own 3D Printer. Apress, 2011.

James Floyd K. 3D printing, Person Que, 2012.

Kaziunas France A. Świat druku 3D. Przewodnik. Helion 2014.

Wolszczak P. Druk 3D w edukacji technicznej. Forum Narzędziowe Oberon, 2014; 2(65): 16-17.

Vaccarezza M., Papa V. 3D printing: a valuable resource in human anatomy education. Anat Sci Int. 2014 [E-pub version].

Schubert C, van Langeveld M. C., Donoso L. A. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 2014; 98(2):159-161.

Ventola C. L. Medical Applications for 3D Printing: Current and Projected Uses. P T. 2014 ; 39(10):704-711.

Huang W., Zhang X. 3D Printing: Print the future of ophthalmology. Invest Ophthalmol Vis Sci. 2014;55(8): 5380-5381.

Mironov V., Boland T., Trusk T., Forgacs G.,Markwald R. R. Organ printing: computer-aided jetbased 3D tissue engineering. Trends Biotechnol. 2003; 21(4): 157-161.

Schubert C., van Langeveld M. C., Donoso L. A. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol.2014; 98(2): 159-161.

Kolakovic R., Viitala T., Ihalainen P., Genina N., Peltonen J., Sandler N. Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv. 2013;10(12):1711-1723.

Ursan I. D., Chiu L., Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 2013; 53(2):136-144.

Herrmann K. H., Gärtner C., Güllmar D., Krämer M.,Reichenbach J. R. 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer. Med Eng Phys. 2014; 36(10):1373-1380.

Mannor M. S. i in. 3D printed bionic ears. Nano Lett.2013; 13(6): 2634–2639.

Mikolajewski D. Mikolajewska E. Exoskeletons in neurological diseases - current and potential future applications. Adv Clin Exp Med. 2011; 20(2):227–233.

Mikołajewska E., Mikołajewski D. Neurorehabilitacja XXI wieku. Techniki teleinformatyczne. Impuls, Kraków 2011.

Downloads

Published

2018-12-01