Analiza małych zbiorów danych medycznych oparta na sztucznej inteligencji

Autor

  • Dariusz Mikołajewski Uniwersytet Kazimierza Wielkiego w Bydgoszczy
  • Emilia Mikołajewska Uniwersytet Mikołaja Kopernika w Toruniu

DOI:

https://doi.org/10.34767/SIMIS.2023.02.03

Słowa kluczowe:

sztuczna inteligencja, małe zbiory danych, zastosowania kliniczne

Abstrakt

Obliczenia małych zbiorów danych w oparciu o sztuczną inteligencję stanowią krok w kierunku obliczeń brzegowych i dalszej personalizacji diagnostyki, terapii i prognoz w praktyce klinicznej. Jednak nadal wymaga to wielu etapów pośrednich, zarówno sprzętowych, jak i programowych. Celem pracy jest ocena, w jakim stopniu dotychczasowe osiągnięcia w obszarze analizy małych zbiorów w oparciu o sztuczną inteligencję stanowią podstawę do opracowania nowej grupy rozwiązań klinicznych i programistycznych.

Bibliografia

Duch W., Nowak W., Meller J., Osiński G., Dobosz K., Mikołajewski D., Wójcik G.M. Computational approach to understanding autism spectrum disorders. Computer Science 2014, 13 (2), 47-47.

Duch W., Nowak W., Meller J., Osiński G., Dobosz K., Mikołajewski D. Consciousness and attention in autism spectrum disorders. Proceedings of Cracow Grid Workshop 2010, 202-211.

Galas K., Efektywność klasyfikacji mrugnięcia z wykorzystaniem wybranych sieci neuronowych. Studia i Materiały Informatyki Stosowanej 2021, 13(1), 11-16.

Keith J.M., Davey C.M., Boyd S.E. A Bayesian method for comparing and combining binary classifiers in the absence of a gold standard. BMC Bioinformatics. 2012; 13, 179. DOI: 10.1186/1471-2105-13-179.

Lima J.A.C., Venkatesh B.A. Building Confidence in AIInterpreted CMR. JACC Cardiovasc Imaging. 2022; 15(3), 428-430. DOI: 10.1016/j.jcmg.2021.10.008.

Løvendahl P., Sehested J. Short communication: Individual cow variation in urinary excretion of phosphorus. J Dairy Sci. 2016; 99(6), 4580-4585. DOI: 10.3168/jds.2015-10338.

Macko M., Szczepański Z., Mikołajewski D., Mikołajewska E., Listopadzki S. The method of artificial organs fabrication based on reverse engineering in medicine. Proceedings of the 13th International Scientific Conference: Computer Aided Engineering Springer 2017, 353-365.

Mikołajewska E., Mikołajewski D. Roboty rehabilitacyjne. Rehabil. Prakt 2010, 4, 49-53.

Mikołajewska E., Mikołajewski D. Zastosowania automatyki i robotyki w wózkach dla niepełnosprawnych i egzoszkieletach medycznych. Pomiary Automatyka Robotyka 2011, 15(5), 58-63.

Mikołajewska E., Prokopowicz, P., Mikolajewski D. Computational gait analysis using fuzzy logic for everyday clinical purposes–preliminary findings. Bio-Algorithms and Med-Systems 2017, 13 (1), 37-42.

Morton R.E., Gnizak H.M., Greene D.J., Cho K.H., Paromov V.M. Lipid transfer inhibitor protein (apolipoprotein F) concentration in normolipidemic and hyperlipidemic subjects. J Lipid Res. 2008; 49(1), 127-35. DOI: 10.1194/jlr.M700258-JLR200.

Perrier C., Delahaie B., Charmantier A. Heritability estimates from genomewide relatedness matrices in wild populations: Application to a passerine, using a small sample size. Mol Ecol Resour. 2018; 18(4), 838-853. DOI: 10.1111/1755-0998.12886.

Piszcz A., BCI w VR: imersja sposobem na sprawniejsze wykorzystywanie interfejsu mózg-komputer. Studia i Materiały Informatyki Stosowanej 2021, 13(1), 5-10.

Prokopowicz P., Mikołajewski D., Tyburek K., Mikołajewska E. Computational gait analysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension and neural networks. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2020, 68 (2), 191-198, DOI: 10.24425/bpasts.2020.13184.

Rojek I., Mikołajewski D., Kotlarz P., Macko M., Kopowski J. Intelligent system supporting technological process planning for machining and 3D printing. Bulletin of the Polish Academy of Sciences. Technical Sciences 2021, 69 (2), e136722, DOI: 10.24425/bpasts.2021.136722.

Rojek I., Mikołajewski D., Macko M., Szczepański Z., Dostatni E. Optimization of extrusion-based 3D printing process using neural networks for sustainable development. Materials 2021, 14 (11), 2737.

Sengupta P.P., Chandrashekhar Y., Imaging With Deep Learning: Sharpening the Cutting Edge. JACC Cardiovasc Imaging. 2022; 15(3), 547-549. DOI: 10.1016/j.jcmg.2022.02.001.

Shteynberg D.D, Deutsch E.W., Campbell D.S, Hoopmann M.R., Kusebauch U., Lee D., Mendoza, L. Midha M.K., Sun Z., Whetton A.D., Moritz R.L. PTMProphet: Fast and Accurate Mass Modification Localization for the Trans Proteomic Pipeline. J Proteome Res. 2019; 18(12), DOI: 10.1021/acs.jproteome.9b00205.

Wang J., Zhang N., Wang S., Liang W., Zhao H., Xia W., Zhu J., Zhang Y., Zhang W., Chai S. AI approach to biventricular function assessment in cine-MRI: an ultra-small training dataset and multivendor study. Phys Med Biol. 2023; DOI: 10.1088/1361-6560/ad0903.

Zhu T., Li K., Herrero P., Georgiou P. Basal Glucose Control in Type 1 Diabetes Using Deep Reinforcement Learning: An In Silico Validation. IEEE J Biomed Health Inform. 2021; 25(4), 1223-1232. DOI: 10.1109/JBHI.2020.3014556.

Opublikowane

2023-12-14

Jak cytować

Analiza małych zbiorów danych medycznych oparta na sztucznej inteligencji. (2023). Studia I Materiały Informatyki Stosowanej, 15(2), 18-22. https://doi.org/10.34767/SIMIS.2023.02.03