Fractal analysis and prediction of changes in gait parameters

Authors

  • Dariusz Mikołajewski Kazimierz Wielki University
  • Emilia Mikołajewska Collegium Medicum im. Ludwika Rydygiera in Bydgoszcz University Nicolaus Copernicus in Torun.
  • Belco Sangho Kazimierz Wielki University

DOI:

https://doi.org/10.34767/SIMIS.2021.02.04

Keywords:

Gait analysis, fractal parameters, classification

Abstract

Walking is one of the most complex and most frequently performedhuman activities. The aim of the study was
twofold: analysis of the methodof calculating fractal gait measures, classification using artificial neural net-works (ANNs) and their usefulness in everyday clinical practice and establish-ing a minimum set of parameters reflecting with sufficient clinical accuracythe change in stroke patients. The study was based on the following datafrom archival records of 50 healthy walkers and 50 stroke patients. The studyshowed that fewer parameters (fractal dimension, Hurst index) allow for betterdescription of the walk. ANNs are able to make an automatic qualitative, notjust quantitative assessment of the walk.

References

Mandelbrot B. B. The fractal geometry of nature,W.H. Freeman, San Francisco (1982).

Prokopowicz P., Mikołajewski D., Tyburek K., Mikołajewska E. Computational gait anal-ysis for post-stroke rehabilitation purposes using fuzzy numbers, fractal dimension andneural networks. Bull Pol Acad Sci Tech Sci 2020, 68(2), 191-198 (2020).

Mikołajewski D., Mikołajewska E., Fractal analysis of gait, Studies and Materials in Applied Computer Science, 12 pp. 23-26 (2020).

Mikołajewska E. Nowe markery chodu w klinicznej analizie chodu w grupie pacjent ́ow poudarze m ́ozgu usprawnianych metoda NDT-Bobath. Wydawnictwo CM UMK, Bydgoszczy2017.

Kaczmarczyk K., Wit A., Krawczyk M., Zaborski J. Gait classification in post-strokepatients using artificial neural networks, Gait Posture, 30(2), 207-210 (2009).

Kostek B., Kupryjanow A. Wykorzystanie sieci neuronowych i metody wektor ́ow no ́snychSVM w procesie rozpoznawania aktywno ́sci ruchowej pacjent ́ow dotknietych chorobaParkinsona. [W:] Tadeusiewicz R., Korbicz J., Rutkowski L., Duch W. (red.) Sieci neuronowe w inżynierii biomedycznej. Tom 9. monografii: Torbacz W., Maniewski R., W ́ojcickiJ. M., Liebert A. (red.) Inżynieria biomedyczna – podstawy i zastosowania. AkademickaOficyna Wydawnicza EXIT, Warszawa 2013, ss. 239-262.

Ripoli A., Belardinelli A., Palagi G., Franchi D., Bedini R. An effective algorithm forquick fractal analysis of movement biosignals. J Med Eng Technol, 23(6), 216-221 (1999).

Phinyomark A., Larracy R., Scheme E. Fractal analysis of human gait variability viastride interval time series. Frontiers in Physiology, 11, 333 (2020).

Gates D. H., Dingwell J. B. Peripheral neuropathy does not alter the fractal dynamicsof stride intervals of gait, J Appl Physiol , 102(3), 965-971 (2007).

Dierick F., Nivard A.-L., White O., Buisseret F. Fractal analyses reveal independentcomplexity and predictability of gait, PLoS ONE 12(11), e0188711(2017).

Lopes R., Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal.,13(4), 634-49 (2009).

Chau T. A review of analytical techniques for gait data. Part 1: fuzzy, statistical andfractal methods. Gait Posture 13, 49–66 (2001).

Chakraborty M., Das T., Ghosh D. Characterization of gait dynamics using fractalanalysis for normal and Parkinson disease patients, 2015 IEEE Power, Communication andInformation Technology Conference (PCITC), Bhubaneswar, 367–372 (2015). ImmersiveVirtual Reality to Restore Natural Long-Range Autocorrelations in Parkinson’s DiseasePatients’ Gait During Treadmill Walking.

Lheureux A., Lebleu J., Frisque C., Sion C., Stoquart G., Warlop T., Detrembleur C.,Lejeune T. Immersive Virtual Reality to Restore Natural LongRange Autocorrelations inParkinson’s Disease Patients’ Gait During Treadmill Walking, Front Physiol. 11, 572063,2020.

Mikołajewski D., Mikołajewska E., Prokopowicz P., Nedashkovskyy M. Wearable devicesin clinical gait analysis, Studies and Materials in Applied Computer Science, 10(1), 5-8(2018).

Mikołajewska E. Normalized gait parameters in NDT-Bobath post-stroke gait rehabilitation, Central European Journal of Medicine, 7(2), 176-182 (2012).

Mikołajewska E., Mikołajewski D. Roboty rehabilitacyjne. Rehabil. Prakt 4, 49-53 (2010).

Mikołajewska E., Mikołajewski D. Zastosowania automatyki i robotyki w wózkach dla niepełnosprawnych i egzoszkieletach medycznych. Pomiary Automatyka Robotyka 15, 58-63 (2011).

Mikołajewska E., Mikołajewski D. Roboty rehabilitacyjne i pielęgnacyjne. Mag. Pielęg. Położ 12, 42 (2009).

Downloads

Published

2021-12-28

How to Cite

Fractal analysis and prediction of changes in gait parameters. (2021). Studia I Materiały Informatyki Stosowanej, 13(2), 21-25. https://doi.org/10.34767/SIMIS.2021.02.04