Egzoszkielet na rękę - koncepcja i rozwój w ramach grantu "Rzeczy są dla ludzi"
DOI:
https://doi.org/10.34767/SIMIS.2022.03.04Słowa kluczowe:
ręka; druk 3D; biomechanika; projektowanie wspomagane komputerowo; egzoszkieletAbstrakt
Instytut Informatyki oraz Wydział Mechatroniki Uniwersytetu Kazimierza Wielkiego wraz z firmą Edurewolucje Sp. z o. o. z/s w Bydgoszczy w ramach konkursu Narodowego Centrum Badań i Rozwoju "Rzeczy są dla ludzi" otrzymali dofinansowanie na realizację
przedsięwzięcia pn. „Opracowanie funkcjonalnego egzoszkieletu ręki do aktywnego treningu i rehabilitacji”. Celem projektu jest realizacja prac badawczo-rozwojowych prowadzących do opracowania innowacyjnej technologii pozwalającej na samodzielną rehabilitację osób ze
szczególnymi potrzebami (przy udziale rehabilitantów i fizjoterapeutów). Projekt przewiduje skonstruowanie prototypu mechanicznego robota rehabilitacyjnego tzw. egzoszkieletu ręki, który wspomoże proces rehabilitacji osób z jej niedowładem oraz innymi szczególnymi
potrzebami dotyczącymi braku mobilności w obszarze ręki. W ramach projektu powstanie specjalistyczne, dedykowane oprogramowanie, które będzie dostosowywało siłę i rodzaj pracy egzoszkieletu na rękę do aktualnych potrzeb i celów programu rehabilitacyjnego pacjenta. Celem niniejszej pracy jest przybliżenie powstania i rozwoju ww. koncepcji w ramach zespołu projektowego podczas dotychczasowych prac projektowych.
Bibliografia
Nizamis K, Athanasiou A, Almpani S, Dimitrousis C, Astaras A. Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. Sensors 2021;21(6):2084.
Mikołajewska E., Mikołajewski D. Roboty rehabilitacyjne. Rehabil. Prakt 2010;4:49-53.
Mikołajewska E., Mikołajewski D. Zastosowania automatyki i robotyki w wózkach dla niepełnosprawnych i egzoszkieletach medycznych. Pomiary Automatyka Robotyka 2011;15(5), 58-63.
Gandolfi M., Valè N., Posteraro F., Morone G., Dell'orco A., Botticelli A., Dimitrova E., Gervasoni E., Goffredo M., Zenzeri J., Antonini A., Daniele C., Benanti P., Boldrini P., Bonaiuti D., Castelli E., Draicchio F., Falabella V., Galeri S., Gimigliano F., Grigioni M., Mazzon S., Molteni F., Petrarca M., Picelli A., Senatore M., Turchetti G., Giansanti D., Mazzoleni S., Italian Consensus Conference on Robotics in Neurorehabilitation (CICERONE). State of the art and challenges for the classification of studies on electromechanical and robotic devices in neurorehabilitation: a scoping review. Eur J Phys Rehabil Med., 2021;57(5):831-840.
Macko, M., Szczepański, Z., Mikołajewski, D., Mikołajewska, E., Listopadzki, S. The Method of Artificial Organs Fabrication Based on Reverse Engineering in Medicine. In: Rusiński, E., Pietrusiak, D. (eds) Proceedings of the 13th International Scientific Conference RESRB 2016. Lecture Notes in Mechanical Engineering. Springer, Cham 2017.
Mikołajewska E., Mikołajewski D. Ethical considerations in the use of brain-computer interfaces. Central European Journal of Medicine 2013; 8(6):720-724.
Rojek I., Mikołajewski D., Dostatni E. Digital twins in product lifecycle for sustainability in manufacturing and maintenance.Applied Sciences 2021; 11(1):31.
Mikołajewska E., Mikołajewski D. Informatyka afektywna w zastosowaniach cywilnych i wojskowych. Zeszyty Naukowe/Wyższa Szkoła Oficerska Wojsk Lądowych im. gen. T. Kościuszki 2013; 2: 171-184.
Gojanovic B., Fourchet F., Gremeaux V. Cognitive biases cloud our clinical decisions and patient expectations: A narrative review to help bridge the gap between evidence-based and personalized medicine. Ann Phys Rehabil Med. 2021;65(4): 101551.
Pastorino R., Loreti C., Giovannini S., Ricciardi W., Padua L., Boccia S. Challenges of Prevention for a Sustainable Personalized Medicine. J Pers Med. 2021;11(4): 311.
W. Wang, Y. Yan, Z. Guo, H. Hou, M. Garcia, X. Tan, E.O. Anto, G. Mahara, Y. Zheng, B. Li, T. Kang, Z. Zhong, Y. Wang, X. Guo, O. Golubnitschaja, "Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine. All around suboptimal health - a joint position paper of the Suboptimal Health Study Consortium and European Association for Predictive, Preventive and Personalised Medicine", EPMA J., vol. 12, no. 4, :pp. 403-433, 2021.
Xiloyannis M., Chiaradia D., Frisoli A., Masia L. Physiological and kinematic effects of a soft exosuit on arm movements. J Neuroeng Rehabil. 2019 Feb 22;16(1):29.
Rojek I., Jagodziński M. Hybrid Artificial Intelligence System in Constraint Based Scheduling of Integrated Manufacturing ERP Systems 7th International Conference on Hybrid Artificial Intelligent Systems (HAIS), Hybrid Artificial Intelligent Systems,2012; PT II 7209:229-240.
Chandra M., Kumar K., Thakur P., Chattopadhyaya S., Alam F., Kumar S. Digital technologies, healthcare and Covid-19: insights from developing and emerging nations. Health Technol. 2022;12(2):547-568.
Görtz M., Byczkowski M., Rath M., Schütz V., Reimold P., Gasch C., Simpfendörfer T., März K., Seitel A., Nolden M., Ross T., Mindroc-Filimon D., Michael D., Metzger J., Onogur S., Speidel S., Mündermann L., Fallert J., Müller M., von Knebel Doeberitz M., Teber D., Seitz P., Maier-Hein L., Duensing S., Hohenfellner M. A Platform and Multisided Market for Translational, Software-Defined Medical Procedures in the Operating Room (OP 4.1): Proof-of-Concept Study. JMIR Med Inform. 2022;10(1):e27743.
Nassour J., Zhao G., Grimmer M. Soft pneumatic elbow exoskeleton reduces the muscle activity, metabolic cost and fatigue during holding and carrying of loads. Sci Rep. 2021 Jun 15;11(1):12556.
Lei Cui, Phan A., Allison G. Design and fabrication of a three dimensional printable non-assembly articulated hand exoskeleton for rehabilitation. Annu Int Conf IEEE Eng Med Biol Soc. 2015; 2015:4627-30.
Kaczmarek M., Nowak J., Olszewski W.L., Zaleska M. Estimation of hydromechanical parameters of limb lymphedematous tissue with the use of chamber tests. Acta of Bioengineering and Biomechanics 2021;23(1): 149-161.
Kaczmarek M., Nowak J., Olszewski W.L., Zaleska M. Simulation-based reasoning of residual tissue deformations in a two-chamber test of a lymphedematous leg. International Journal for Numerical Methods in Biomedical Engineering 2022;38(1):e3537.
Burns M.K., Van Orden K., Patel V., Vinjamuri R. Towards a wearable hand exoskeleton with embedded synergies. Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:213-216.
Dudley D.R., Knarr B.A., Siu K.C., Peck J., Ricks B., Zuniga J.M. Testing of a 3D printed hand exoskeleton for an individual with stroke: a case study. Disabil Rehabil Assist Technol. 2021 Feb;16(2):209-213.
Yoo H.J., Lee S., Kim J., Park C., Lee B. Development of 3D-printed myoelectric hand orthosis for patients with spinal cord injury. J Neuroeng Rehabil. 2019 Dec 30;16(1):162.
Rojek I., Mikołajewski D., Dostatni E., Macko M. AIOptimized Technological Aspects of the Material Used in 3D Printing Processes for Selected Medical Applications. Materials (Basel). 2020 Nov 29;13(23):5437.
Li M., Chen J., He G., Cui L., Chen C., Secco E.L., Yao W., Xie J., Xu G., Wurdemann H. Attention Enhancement for Exoskeleton-Assisted Hand Rehabilitation Using Fingertip Haptic Stimulation. Front Robot AI. 2021 May 21;8:602091.
Araujo R.S., Silva C.R., Netto S.P.N., Morya E., Brasil F.L. Development of a Low-Cost EEG-Controlled Hand Exoskeleton 3D Printed on Textiles. Front Neurosci. 2021 Jun 25;15:661569.
Noronha B., Ng C.Y., Little K., Xiloyannis M., Kuah C.W.K., Wee S.K., Kulkarni S.R., Masia L., Chua K.S.G., Accoto D. Soft, Lightweight Wearable Robots to Support the Upper Limb in Activities of Daily Living: A Feasibility Study on Chronic Stroke Patients. IEEE Trans Neural Syst Rehabil Eng. 2022;30:1401-1411.
Hayat A., Dias M., Bhuyan B.P., Tomar R. Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Information 2022; 13, 275.
Monoscalco L., Simeoni R., Maccioni G., Giansanti D. Information Security in Medical Robotics: A Survey on the Level of Training, Awareness and Use of the Physiotherapist. Healthcare 2022;10(1):159.
Goffredo M., Pournajaf S., Proietti S., Gison A., Posteraro F., Franceschini M. Retrospective RobotMeasured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers. Front Neurol. 2021; 12: 803901.
Giang C., Pirondini E., Kinany N., Pierella C., Panarese A., Coscia M., Miehlbradt J., Magnin C., Nicolo P., Guggisberg A., Micera S. Motor improvement estimation and task adaptation for personalized robot-aided therapy: a feasibility study. Biomed Eng Online2020;19(1):33.
Vélez-Guerrero M.A., Callejas-Cuervo M., Mazzoleni S. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation. Sensors 2021; 21(16):5411.
Kopke J.V., Ellis M.D., Hargrove L.J. Determining User Intent of Partly Dynamic Shoulder Tasks in Individuals With Chronic Stroke Using Pattern Recognition. IEEE Trans Neural Syst Rehabil Eng. 2020; 28(1); 350-358.
Rojek, I. Neural Networks as Performance Improvement Models in Intelligent CAPP Systems. Control Cybern. 2010; 39(1):55–68.
Rojek I., Dostatni E., Hamrol A. Ecodesign of Technological Processes with the Use of Decision Trees Method. In: International Joint Conference SOCO’17- CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017, Proceeding. SOCO 2017, CISIS 2017, ICEUTE 2017. Advances in Intelligent Systems and Computing, vol. 649, pp. 318–327, eds. H. Pérez García, J. Alfonso Cendón, L. Sánchez González, H. Quintián and E. Corchado, Springer, Cham, 2018.