Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych

Autor

  • Małolepsza Olga Uniwersytet Kazimierza Wielkiego w Bydgoszczy

DOI:

https://doi.org/10.34767/SIMIS.2023.01.02

Słowa kluczowe:

zbiory rozmyte, metody adaptacji, funkcja przynależności, sztuczna inteligencja, systemy rozmyte, rozmyte sieci neuronowe

Abstrakt

Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych są bardzo ważnym tematem, ponieważ udoskonalają i optymalizują wydajność systemów rozmytych poprzez właściwą metodę adaptacji. Metoda adaptacji zależy od konkretnego zastosowania, wymagań systemowych, dostępnych danych i dziedziny problemu. W artykule przedstawiono zagadnienia związane ze zbiorami rozmytymi oraz podano przykłady. Ponadto zaprezentowano metody adaptacji systemów wiedzy opartej na zbiorach rozmytych takie jak algorytmy genetyczne, programowanie ewolucyjne, algorytmy uczące się, uczenie przez wzmacnianie oraz adaptację online.

Bibliografia

Seising R. The Fuzzification of Systems: The Genesis of Fuzzy Set Theory and itsInitial Applications – Developmentsup to the 1970s, Springer, 2007.

Paszek A. Zastosowanie logiki rozmytej w budowie systemów zarządzania wiedzą produkcyjną, Zakopane 2017, Konferencja Przemysł 4.0 a Zarządzanie i Inżynieria Produkcji, IZIP 2017.

Anholcer G. Z badań nad zastosowaniem teorii zbiorów rozmytych w logistyce, Zeszyty Naukowe 2010; 156.

Prokopowicz P., Czerniak J., Mikołajewski D., Apiecionek Ł., Ślęzak D. Theory and Applications of Ordered Fuzzy Numbers A Tribute to Professor Witold Kosiński, Springer Open, 2017

Zadeh L.A. FuzzySets, Information and control 8, 338-353 (1965)

Zadeh L.A., Aliev R.A. Fuzzy Logic Theory And Applications: Part I And Part II, World Scientific, 2018.

Brown J.G. A Note on Fuzzy Sets, Information and Control 18, 32-39 (1971).

Azam M.H., Hasan M.H., Hassan S., Abdulkadir S.J. Fuzzy Type-1 Triangular Membership Function Approximation Using Fuzzy C-Means, In Proceedings of the 2020 International Conference on ComputationalIntelligence (ICCI), 2020.

Rutkowski L. FlexibleNeuro-Fuzzy Systems, Kluwer AcademicPublishers, 2004.

Klir G.J., Yuan B. FuzzySets And FuzzyLogicTheory and Applications, Prentice Hall PTR, 1995.

Stefik M. Introduction to Knowledge Systems, Morgan Kaufmann, 1995.

McNeill F.M., Thro E. FuzzyLogic A PracticalApproach, AP Professional, 1994.

Winiczenko R. Algorytmy genetyczne i ich zastosowania, Postępy Techniki Przetwórstwa Spożywczego, 2008.

Cox E. Fuzzy Modeling and GeneticAlgorithms for Data Mining and Exploration, Morgan Kaufmann, 2005.

Wang, W., Jing, Z., Zhao, S., Lu, Z., Xing, Z., Guo, S. Intelligent Height Adjustment Method of Shearer Drum Based on Rough Set Significance Reduction and Fuzzy Rough Radial Basis Function Neural Network. Appl. Sci. 2023.

García-Valdez, M., Mancilla, A., Castillo, O., MereloGuervós, J.J. Distributed and Asynchronous Population-Based Optimization Applied to the Optimal Design of Fuzzy Controllers. Symmetry 2023.

Fogel D.B. Evolutionaryprogramming: anintroduction and somecurrentdirections, Statistics and Computing, 1994.

Li H., Gupta M. M. FuzzyLogic and inteligent systems, Kluwer AcademicPublishers, 1995.

Houghten S., Banik S. Effectivedecoders for DNA codes, BioSystems, 2022.

Wiktorowicz K. Uczący się regulator rozmyty z modelem odniesienia, Pomiary Automatyka Kontrola, nr 12, 2008.

Rusiecki A. Algorytmy uczenia sieci neuronowych odporne na błędy w danych, Politechnika Wrocławska, 2007.

Smola A., Vishwanathan S.V.N. Introduction to Machine Learning, Cambridge University Press, 2008

Alsaadi F.E., Yasami A., Volos C., Bekiros S., Jahanshahi H. A New FuzzyReinforcement Learning Method for EffectiveChemotherapy, Mathematics, 2023.

Bingham E., Reinforcement learning in neurofuzzy traffic Signac control, EuropeanJournal of OperationalResearch 131, 2001, 232-241.

Khati H., Talem H., Touat M.A., Mellah R., Guermah S., Online Adaptation of a CompensatoryNeuro-Fuzzy Controller Parameters Using the Extended Kalman Filter: Application on anInvertedPendulum, Engineering Proceedings, 2022

Cara A.B., Lendek Z., Babuska R., Pomares H., Rojas I. Online self-organizingadaptivefuzzycontroller: Application to a nonlinearservo system, FUZZ-IEEE 2010, IEEE International Conference on Fuzzy Systems, 2010.

Souza P.V.C. Fuzzyneural networks and neuro-fuzzy networks: A review the maintechniques and applicationsused in the literature, Applied Soft Computing Volume 92, 2020.

Tadeusiewicz R. Sieci Neuronowe, Akademicka Oficyna Wydawnicza, 1993.

Gao, F., Hsieh, J.-G., Kuo, Y.-S., Jeng, J.-H. Study on ResistantHierarchicalFuzzyNeural Networks, Electronics, 2022.

Hsieh J.G., Jeng J.H., Lin Y.L., Kuo Y.S. Single index fuzzyneural networks using locally weighted polynomial regression, Elsevier, 2019.

Zimmermann H.-J. Fuzzy Set Theory and itsapplications, Springer, 2001

Pobrania

Opublikowane

2023-09-20

Jak cytować

Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych. (2023). Studia I Materiały Informatyki Stosowanej, 15(1), 11-19. https://doi.org/10.34767/SIMIS.2023.01.02